



# State of Montana IT Server Optimization "Cobra" Workshop Full Final Presentation August 31, 2010

Rick Schoenmann – Project Manager and Financial Lead
John Karaba – Lead Technical Consultant

raschoen@us.ibm.com jkaraba@us.ibm.com







## State of Montana Cobra Optimization

### **State of Montana sponsors**

- Tammy LaVigne Chair, ITMC Virtualization/Consolidation workgroup
- Dick Clark Chief Information Officer
- Tom Livers DEQ
- Stuart Fuller DOA

#### **Objectives**

- Develop optimization recommendations that:
  - Improve cost profile
  - Help reduce complexity through infrastructure simplification, consolidation and virtualization
  - Optimize and reduce overall energy and space utilization

#### **Findings**

- \$14 million potential savings over 5 years
  - Intangible savings
- 77% reduction in server energy consumption
  - NW Energy Incentive Programs
  - 20x10 Agency Incentives
- Timing is Right
  - 58% of server base will be 4 years or older by end of 2010
  - Radical changes in technology create opportunity for capital investments now







# Workshop Participants

| Agency                         | Decom | keep as-is | Virtualize |
|--------------------------------|-------|------------|------------|
| Office of Public Instructions  |       |            | 19         |
| Dep-of-Admin-ITSD              | 35    | 73         | 671        |
| Dep-of-Commerce                | 8     |            | 41         |
| Dep-Env-Quality                | 6     | 2          | 38         |
| Dep-of-Labor & Industry        |       | 23         | 79         |
| Dep-of-Transportation          | 1     | 42         | 107        |
| Dep-of-Fish & Wildlife         | 3     | 15         | 37         |
| Dep-of-Health & Human Services | 14    | 73         | 80         |
| Dep-of-Revenue                 | 2     | 34         | 24         |
| Dep-of-Corrections             |       | 27         | 13         |
| MT-JudiciaryCourts             | 2     | 39         | 15         |
| Dep-of-Natural Resources       | _     | 13         | 4          |
| <b>Grand Total</b>             | 71    | 341        | 1,128      |

Currently a number of the State's servers have already been optimized to some degree; however, based on input from each agency, there is an additional 298 servers that can immediately be optimized to an even higher level through virtualization and, where appropriate, centralization..







# Technical Solution Summary for recommended alternative future state Summary is based on the lowest cost alternative



|      |     |                                              | Current State     |          |       |     |  |
|------|-----|----------------------------------------------|-------------------|----------|-------|-----|--|
|      |     |                                              |                   | Physical |       |     |  |
|      | #   | Server Island                                | Server Type/Model | Servers  | Cores | kW  |  |
|      | 101 | x86 - Oracle Databases - Physical to VMWare  | x86 (Mixed)       | 24       | 135   | 20  |  |
|      | 102 | x86 - SQL Databases - Physical to VMWare     | x86 (Mixed)       | 20       | 104   | 11  |  |
| x86  | 103 | x86 - Apps/DB/Web/Infra - Physical to Vmware | x86 (Mixed)       | 178      | 577   | 94  |  |
|      | 104 | x86 - Physical to Hyper-V                    | x86 (Mixed)       | 23       | 107   | 15  |  |
|      | 105 | x86- Virtual (Refresh 4 yrs or older)        | x86 (Mixed)       | 13       | 55.6  | 11  |  |
|      | 111 | Unix- Oracle Databases                       | Unix (mixed)      | 20       | 74.9  | 20  |  |
| Unix | 112 | Unix- Apps/Web                               | Unix (mixed)      | 20       | 48    | 13  |  |
|      |     |                                              | _                 | 298      | 1,102 | 184 |  |

| Potential Target State** |                     |       |    |  |
|--------------------------|---------------------|-------|----|--|
| Server Type/Model        | Physical<br>Servers | Cores | kW |  |
| x3850.X5(4)75508C-256GB  | 3                   | 96    | 6  |  |
| x3850.X5(4)75508C-256GB  | 2                   | 64    | 3  |  |
| x3850.X5(4)75508C-256GB  | 3                   | 96    | 16 |  |
| x3650.M3(2)5650HC-144GB  | 2                   | 24    | 3  |  |
| x3850.X5(4)75508C-256GB  | 1                   | 32    | 3  |  |
| p.750(16)3.3             | 3                   | 48    | 7  |  |
| p.750(16)3.3             | 2                   | 32    | 5  |  |
|                          | 16                  | 392   | 43 |  |

#### **Current State:**

- Complexity due to server sprawl and high HW diversity
- Some limited potential to improve utilized compute capacity
- Aging Server Environment
- Good virtualization on x86
- Older servers not Energy Efficient
- Lack of economies of scale outside of main DC
- Limited D/R and physical security outside of main DC



#### **Target State Benefits:**

- Highly virtualized server environment
- 95% fewer servers, 65% fewer cores using standard HW and Software building blocks
- Improved utilization of compute capacity
- 77% reduction in server energy\* consumption by using energy efficient server technologies.
- ~ \$14M in savings over 5 years







# Summary business case of all discrete recommendations

| Business Case Summary        | У          |                |                  |          |                     |
|------------------------------|------------|----------------|------------------|----------|---------------------|
| Sizing                       | Current    | AltCase1 115:1 | Change           |          | 5 Year Projection   |
| Server Type                  |            |                |                  |          |                     |
| Total CPU Cores              | 1,101.50   | 392            | -64%             | 20,000   |                     |
| Used CPU Cores               | 1,101.50   | 392            | -64%             |          |                     |
| Total CPU Sockets            |            | 50             | -91%             | 18,000   |                     |
| #Logical Servers             | 401.00     | 398            | -1%              | 10,000   | Transition          |
| #Physical Servers            | 297.90     | 16.00          | -95%             | 16.000   |                     |
| Ave.Log.Srv RIP              | 2,062.3    | 1,319.3        | -36%             | 16,000 - | ■ Hardware Maint    |
| Total RIP Capacity           | 826,981.7  | 525,070.0      | -37%             |          |                     |
| Total RIP Workload           | 125,696.7  | 125,696.7      | 0%               | 14,000   | ■ Space             |
| Ave %Utilization             | 19%        | 22%            | 15%              |          | - Floatric          |
|                              |            |                |                  | 12,000   | ■ Electric          |
| Annual Operating Costs (AOC) |            |                |                  |          | ■ Depreciation      |
| Staff Cost Code              |            |                |                  | 10,000   | = Bepresidation     |
| Software Cost Code           |            |                |                  | 10,000   | ■ Staff             |
| Software Cost /CPU           |            |                |                  |          |                     |
| Software Cost /Lsrv          |            |                |                  | 8,000    | Software            |
| Software Cost /Psrv          |            |                |                  |          | Purchase            |
| System Software M&S          | 1,074,112  | 315,798        | -71%             | 6,000    | ■ Hardware          |
| Hardware Maint               | 505,478    | 45,420         | -91%             |          | Purchase            |
| Space                        | 0          | 0              | 0%               | 4,000    | System Software M&S |
| Electric                     | 161,633    | 37,448         | -77%             | , l      | Software Mas        |
| Staff                        | 0          | 0              | 0%               | 2,000    |                     |
| Depreciation                 | 293,333    | 333,910        | 14%              | 2,000    |                     |
| Total AOC                    | 2,034,556  | 732,576        | -64%             |          |                     |
| est.potential saving /yr     |            | 1,301,980      |                  | 0 +      |                     |
| One Time Costs (OTC)         |            |                |                  | С        | 1                   |
| Software Purchase            | 0          | 153,792        |                  |          |                     |
| Hardware Purchase            | 8,795,750  | 1,001,730      |                  |          |                     |
|                              | 0          |                |                  |          |                     |
| Total OTC                    | 8,795,750  | 1,155,522      |                  |          |                     |
|                              | 0          | 0              |                  |          |                     |
| Investment incl.Write-Off    |            | -7,640,228     |                  |          |                     |
| 5 Year Projection            | 40.000.500 | 4.750.700      |                  |          |                     |
| OTC + 5x AOC                 | 18,968,530 | 4,756,782      | 750/             |          |                     |
| 5 yr saving                  |            | 14,211,748     | <del>-75</del> % |          |                     |







# Summary environmental case of all discrete recommendations

| Environment: Energy/Space | С       | 1       | Change |       |   |   |                 |
|---------------------------|---------|---------|--------|-------|---|---|-----------------|
| Total RackU               | 751.8   | 96.0    | -87%   | 200.0 |   |   |                 |
| Racks (38/42U utilised)   | 19.8    | 3.2     | -84%   |       |   |   |                 |
|                           |         |         |        | 180.0 |   |   |                 |
| Systems kW                | 122.9   | 13.2    |        | 160.0 |   |   |                 |
| Distribution kW           | 20.3    | 2.2     |        | 100.0 |   |   |                 |
| Mechanical kW             | 41.2    | 27.4    |        | 140.0 |   |   |                 |
| Total kW                  | 184.4   | 42.7    | -77%   | 120.0 |   |   |                 |
|                           |         |         |        | 120.0 |   |   | ■ Systems kW    |
| Energy Efficiency         |         |         |        | 100.0 |   |   | Distribution kW |
| Relative RIPs /Watt       | 1.0     | 9.3     | 834%   | 80.0  |   |   | ■ Mechanical kW |
| Watts/Workload            | 20082.3 | 19169.9 | -5%    | 80.0  |   |   |                 |
| USD Elec Cost/Log.Srv     | 403     | 94      | -77%   | 60.0  |   |   |                 |
| _                         |         |         |        | 40.0  |   |   |                 |
| CO2 Emission              |         |         |        | 40.0  |   |   |                 |
| Systems                   | 592.0   | 63.4    |        | 20.0  |   |   |                 |
| Distribution              | 97.7    | 10.5    |        |       |   |   |                 |
| Mechanical                | 198.3   | 131.9   |        | 0.0   |   | _ |                 |
| tonnes CO2 / yr           | 887.9   | 205.7   |        |       | С | 1 |                 |
| tonnes CO2 / kRIP         | 7.1     | 1.6     |        |       |   |   |                 |
|                           |         |         |        |       |   |   |                 |







# High Level –Recommendation

| Area                      | Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Strategy                  | <ul> <li>Make Optimization a central part of you strategy for your IT infrastructure as a means to reduce costs and improve energy efficiency.</li> <li>Centralize as much as possible and standardize on one virtualization platform for each major hardware platform (Unix, x86).</li> </ul>                                                                                                                                                                                               |
| Server Optimization       | <ul> <li>Leverage main DC in Helena for centralizing virtualized workloads. Review performance, availability and security requirements for each agency to ensure adequate service levels.</li> <li>For x86 workloads virtualize on VMware, leveraging DRS clusters where possible.</li> <li>For Unix workloads leverage AIX/Linux on Power with micro-partitioning capabilities and Live Partition Mobility as a reasonable alternative to increase reliability and availability.</li> </ul> |
| Technology Refresh        | <ul> <li>Initiate an immediate technology refresh initiative to replace older equipment.</li> <li>Where possible retire legacy servers to further reduce power consumption.</li> </ul>                                                                                                                                                                                                                                                                                                       |
| Server Platform Selection | <ul> <li>For your x86 environment consider 4-socket x3850 X5 or HX5 2-socket blades to leverage technology advancements based on Nehalem and IBM's X5</li> <li>For Unix workloads consider virtualizing on AIX/Linux on Power 7 using Advanced Partitioning and Live Partition Mobility</li> </ul>                                                                                                                                                                                           |
| Storage                   | <ul> <li>Review current storage environment to accommodate a virtualized server infrastructure. Refresh older<br/>storage gear.</li> </ul>                                                                                                                                                                                                                                                                                                                                                   |
| Network                   | Review network infrastructure for possible reduction of network gear, due to reduction in servers.                                                                                                                                                                                                                                                                                                                                                                                           |
| Systems Management        | <ul> <li>Leverage VMware vCenter and IBM Director to manage your new virtual infrastructure.</li> <li>Consider VMControl to manage virtual server resources on multiple Hypervisors</li> <li>Leverage an integrated service management system to allow for management of both physical and virtual workloads - through a single interface to physical servers, storage and networking - and to ensure fast provisioning, de-provisioning and remediation of issues.</li> </ul>               |







# Next Steps?



